Define attributes on ORM-mapped classes that have “index” attributes for
columns with Indexable
types.
“index” means the attribute is associated with an element of an
Indexable
column with the predefined index to access it.
The Indexable
types include types such as
ARRAY
, JSON
and
HSTORE
.
The indexable
extension provides
Column
-like interface for any element of an
Indexable
typed column. In simple cases, it can be
treated as a Column
- mapped attribute.
New in version 1.1.
Given Person
as a model with a primary key and JSON data field.
While this field may have any number of elements encoded within it,
we would like to refer to the element called name
individually
as a dedicated attribute which behaves like a standalone column:
from sqlalchemy import Column, JSON, Integer
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.indexable import index_property
Base = declarative_base()
class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
data = Column(JSON)
name = index_property('data', 'name')
Above, the name
attribute now behaves like a mapped column. We
can compose a new Person
and set the value of name
:
>>> person = Person(name='Alchemist')
The value is now accessible:
>>> person.name
'Alchemist'
Behind the scenes, the JSON field was initialized to a new blank dictionary and the field was set:
>>> person.data
{"name": "Alchemist'}
The field is mutable in place:
>>> person.name = 'Renamed'
>>> person.name
'Renamed'
>>> person.data
{'name': 'Renamed'}
When using index_property
, the change that we make to the indexable
structure is also automatically tracked as history; we no longer need
to use MutableDict
in order to track this change
for the unit of work.
Deletions work normally as well:
>>> del person.name
>>> person.data
{}
Above, deletion of person.name
deletes the value from the dictionary,
but not the dictionary itself.
A missing key will produce AttributeError
:
>>> person = Person()
>>> person.name
...
AttributeError: 'name'
Unless you set a default value:
>>> class Person(Base):
>>> __tablename__ = 'person'
>>>
>>> id = Column(Integer, primary_key=True)
>>> data = Column(JSON)
>>>
>>> name = index_property('data', 'name', default=None) # See default
>>> person = Person()
>>> print(person.name)
None
The attributes are also accessible at the class level.
Below, we illustrate Person.name
used to generate
an indexed SQL criteria:
>>> from sqlalchemy.orm import Session
>>> session = Session()
>>> query = session.query(Person).filter(Person.name == 'Alchemist')
The above query is equivalent to:
>>> query = session.query(Person).filter(Person.data['name'] == 'Alchemist')
Multiple index_property
objects can be chained to produce
multiple levels of indexing:
from sqlalchemy import Column, JSON, Integer
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.ext.indexable import index_property
Base = declarative_base()
class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
data = Column(JSON)
birthday = index_property('data', 'birthday')
year = index_property('birthday', 'year')
month = index_property('birthday', 'month')
day = index_property('birthday', 'day')
Above, a query such as:
q = session.query(Person).filter(Person.year == '1980')
On a PostgreSQL backend, the above query will render as:
SELECT person.id, person.data
FROM person
WHERE person.data -> %(data_1)s -> %(param_1)s = %(param_2)s
index_property
includes special behaviors for when the indexed
data structure does not exist, and a set operation is called:
index_property
that is given an integer index value,
the default data structure will be a Python list of None
values,
at least as long as the index value; the value is then set at its
place in the list. This means for an index value of zero, the list
will be initialized to [None]
before setting the given value,
and for an index value of five, the list will be initialized to
[None, None, None, None, None]
before setting the fifth element
to the given value. Note that an existing list is not extended
in place to receive a value.index_property
that is given any other kind of index
value (e.g. strings usually), a Python dictionary is used as the
default data structure.index_property.datatype
parameter, overriding the previous
rules.index_property
can be subclassed, in particular for the common
use case of providing coercion of values or SQL expressions as they are
accessed. Below is a common recipe for use with a PostgreSQL JSON type,
where we want to also include automatic casting plus astext()
:
class pg_json_property(index_property):
def __init__(self, attr_name, index, cast_type):
super(pg_json_property, self).__init__(attr_name, index)
self.cast_type = cast_type
def expr(self, model):
expr = super(pg_json_property, self).expr(model)
return expr.astext.cast(self.cast_type)
The above subclass can be used with the PostgreSQL-specific
version of postgresql.JSON
:
from sqlalchemy import Column, Integer
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.dialects.postgresql import JSON
Base = declarative_base()
class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
data = Column(JSON)
age = pg_json_property('data', 'age', Integer)
The age
attribute at the instance level works as before; however
when rendering SQL, PostgreSQL’s ->>
operator will be used
for indexed access, instead of the usual index operator of ->
:
>>> query = session.query(Person).filter(Person.age < 20)
The above query will render:
SELECT person.id, person.data
FROM person
WHERE CAST(person.data ->> %(data_1)s AS INTEGER) < %(param_1)s
sqlalchemy.ext.indexable.
index_property
(attr_name, index, default=<object object>, datatype=None, mutable=True, onebased=True)¶Bases: sqlalchemy.ext.hybrid.hybrid_property
A property generator. The generated property describes an object
attribute that corresponds to an Indexable
column.
New in version 1.1.
See also
__init__
(attr_name, index, default=<object object>, datatype=None, mutable=True, onebased=True)¶Create a new index_property
.
Parameters: |
|
---|