ldns  1.7.0
sha2.c
Go to the documentation of this file.
1 /*
2  * FILE: sha2.c
3  * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
4  *
5  * Copyright (c) 2000-2001, Aaron D. Gifford
6  * All rights reserved.
7  *
8  * Modified by Jelte Jansen to fit in ldns, and not clash with any
9  * system-defined SHA code.
10  * Changes:
11  * - Renamed (external) functions and constants to fit ldns style
12  * - Removed _End and _Data functions
13  * - Added ldns_shaX(data, len, digest) convenience functions
14  * - Removed prototypes of _Transform functions and made those static
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  * notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  * notice, this list of conditions and the following disclaimer in the
23  * documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the copyright holder nor the names of contributors
25  * may be used to endorse or promote products derived from this software
26  * without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
41  */
42 
43 #include <ldns/config.h>
44 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
45 #include <assert.h> /* assert() */
46 #include <ldns/sha2.h>
47 
48 /*
49  * ASSERT NOTE:
50  * Some sanity checking code is included using assert(). On my FreeBSD
51  * system, this additional code can be removed by compiling with NDEBUG
52  * defined. Check your own systems manpage on assert() to see how to
53  * compile WITHOUT the sanity checking code on your system.
54  *
55  * UNROLLED TRANSFORM LOOP NOTE:
56  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57  * loop version for the hash transform rounds (defined using macros
58  * later in this file). Either define on the command line, for example:
59  *
60  * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
61  *
62  * or define below:
63  *
64  * #define SHA2_UNROLL_TRANSFORM
65  *
66  */
67 
68 
69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
70 /*
71  * BYTE_ORDER NOTE:
72  *
73  * Please make sure that your system defines BYTE_ORDER. If your
74  * architecture is little-endian, make sure it also defines
75  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
76  * equivilent.
77  *
78  * If your system does not define the above, then you can do so by
79  * hand like this:
80  *
81  * #define LITTLE_ENDIAN 1234
82  * #define BIG_ENDIAN 4321
83  *
84  * And for little-endian machines, add:
85  *
86  * #define BYTE_ORDER LITTLE_ENDIAN
87  *
88  * Or for big-endian machines:
89  *
90  * #define BYTE_ORDER BIG_ENDIAN
91  *
92  * The FreeBSD machine this was written on defines BYTE_ORDER
93  * appropriately by including <sys/types.h> (which in turn includes
94  * <machine/endian.h> where the appropriate definitions are actually
95  * made).
96  */
97 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
98 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
99 #endif
100 
101 typedef uint8_t sha2_byte; /* Exactly 1 byte */
102 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
103 #ifdef S_SPLINT_S
104 typedef unsigned long long sha2_word64; /* lint 8 bytes */
105 #else
106 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
107 #endif
108 
109 /*** SHA-256/384/512 Various Length Definitions ***********************/
110 /* NOTE: Most of these are in sha2.h */
111 #define ldns_sha256_SHORT_BLOCK_LENGTH (LDNS_SHA256_BLOCK_LENGTH - 8)
112 #define ldns_sha384_SHORT_BLOCK_LENGTH (LDNS_SHA384_BLOCK_LENGTH - 16)
113 #define ldns_sha512_SHORT_BLOCK_LENGTH (LDNS_SHA512_BLOCK_LENGTH - 16)
114 
115 
116 /*** ENDIAN REVERSAL MACROS *******************************************/
117 #if BYTE_ORDER == LITTLE_ENDIAN
118 #define REVERSE32(w,x) { \
119  sha2_word32 tmp = (w); \
120  tmp = (tmp >> 16) | (tmp << 16); \
121  (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
122 }
123 #ifndef S_SPLINT_S
124 #define REVERSE64(w,x) { \
125  sha2_word64 tmp = (w); \
126  tmp = (tmp >> 32) | (tmp << 32); \
127  tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
128  ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
129  (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
130  ((tmp & 0x0000ffff0000ffffULL) << 16); \
131 }
132 #else /* splint */
133 #define REVERSE64(w,x) /* splint */
134 #endif /* splint */
135 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
136 
137 /*
138  * Macro for incrementally adding the unsigned 64-bit integer n to the
139  * unsigned 128-bit integer (represented using a two-element array of
140  * 64-bit words):
141  */
142 #define ADDINC128(w,n) { \
143  (w)[0] += (sha2_word64)(n); \
144  if ((w)[0] < (n)) { \
145  (w)[1]++; \
146  } \
147 }
148 #ifdef S_SPLINT_S
149 #undef ADDINC128
150 #define ADDINC128(w,n) /* splint */
151 #endif
152 
153 /*
154  * Macros for copying blocks of memory and for zeroing out ranges
155  * of memory. Using these macros makes it easy to switch from
156  * using memset()/memcpy() and using bzero()/bcopy().
157  *
158  * Please define either SHA2_USE_MEMSET_MEMCPY or define
159  * SHA2_USE_BZERO_BCOPY depending on which function set you
160  * choose to use:
161  */
162 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
163 /* Default to memset()/memcpy() if no option is specified */
164 #define SHA2_USE_MEMSET_MEMCPY 1
165 #endif
166 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
167 /* Abort with an error if BOTH options are defined */
168 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
169 #endif
170 
171 #ifdef SHA2_USE_MEMSET_MEMCPY
172 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
173 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
174 #endif
175 #ifdef SHA2_USE_BZERO_BCOPY
176 #define MEMSET_BZERO(p,l) bzero((p), (l))
177 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
178 #endif
179 
180 
181 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
182 /*
183  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
184  *
185  * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
186  * S is a ROTATION) because the SHA-256/384/512 description document
187  * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
188  * same "backwards" definition.
189  */
190 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
191 #define R(b,x) ((x) >> (b))
192 /* 32-bit Rotate-right (used in SHA-256): */
193 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
194 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
195 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
196 
197 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
198 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
199 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
200 
201 /* Four of six logical functions used in SHA-256: */
202 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
203 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
204 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
205 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
206 
207 /* Four of six logical functions used in SHA-384 and SHA-512: */
208 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
209 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
210 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
211 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
212 
213 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
214 /* Hash constant words K for SHA-256: */
215 static const sha2_word32 K256[64] = {
216  0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
217  0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
218  0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
219  0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
220  0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
221  0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
222  0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
223  0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
224  0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
225  0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
226  0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
227  0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
228  0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
229  0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
230  0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
231  0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
232 };
233 
234 /* initial hash value H for SHA-256: */
235 static const sha2_word32 ldns_sha256_initial_hash_value[8] = {
236  0x6a09e667UL,
237  0xbb67ae85UL,
238  0x3c6ef372UL,
239  0xa54ff53aUL,
240  0x510e527fUL,
241  0x9b05688cUL,
242  0x1f83d9abUL,
243  0x5be0cd19UL
244 };
245 
246 /* Hash constant words K for SHA-384 and SHA-512: */
247 static const sha2_word64 K512[80] = {
248  0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
249  0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
250  0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
251  0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
252  0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
253  0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
254  0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
255  0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
256  0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
257  0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
258  0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
259  0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
260  0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
261  0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
262  0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
263  0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
264  0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
265  0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
266  0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
267  0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
268  0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
269  0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
270  0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
271  0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
272  0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
273  0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
274  0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
275  0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
276  0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
277  0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
278  0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
279  0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
280  0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
281  0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
282  0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
283  0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
284  0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
285  0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
286  0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
287  0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
288 };
289 
290 /* initial hash value H for SHA-384 */
291 static const sha2_word64 sha384_initial_hash_value[8] = {
292  0xcbbb9d5dc1059ed8ULL,
293  0x629a292a367cd507ULL,
294  0x9159015a3070dd17ULL,
295  0x152fecd8f70e5939ULL,
296  0x67332667ffc00b31ULL,
297  0x8eb44a8768581511ULL,
298  0xdb0c2e0d64f98fa7ULL,
299  0x47b5481dbefa4fa4ULL
300 };
301 
302 /* initial hash value H for SHA-512 */
303 static const sha2_word64 sha512_initial_hash_value[8] = {
304  0x6a09e667f3bcc908ULL,
305  0xbb67ae8584caa73bULL,
306  0x3c6ef372fe94f82bULL,
307  0xa54ff53a5f1d36f1ULL,
308  0x510e527fade682d1ULL,
309  0x9b05688c2b3e6c1fULL,
310  0x1f83d9abfb41bd6bULL,
311  0x5be0cd19137e2179ULL
312 };
313 
314 /*** SHA-256: *********************************************************/
316  if (context == (ldns_sha256_CTX*)0) {
317  return;
318  }
319  MEMCPY_BCOPY(context->state, ldns_sha256_initial_hash_value, LDNS_SHA256_DIGEST_LENGTH);
321  context->bitcount = 0;
322 }
323 
324 #ifdef SHA2_UNROLL_TRANSFORM
325 
326 /* Unrolled SHA-256 round macros: */
327 
328 #if BYTE_ORDER == LITTLE_ENDIAN
329 
330 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
331  REVERSE32(*data++, W256[j]); \
332  T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
333  K256[j] + W256[j]; \
334  (d) += T1; \
335  (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
336  j++
337 
338 
339 #else /* BYTE_ORDER == LITTLE_ENDIAN */
340 
341 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
342  T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
343  K256[j] + (W256[j] = *data++); \
344  (d) += T1; \
345  (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
346  j++
347 
348 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
349 
350 #define ROUND256(a,b,c,d,e,f,g,h) \
351  s0 = W256[(j+1)&0x0f]; \
352  s0 = sigma0_256(s0); \
353  s1 = W256[(j+14)&0x0f]; \
354  s1 = sigma1_256(s1); \
355  T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
356  (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
357  (d) += T1; \
358  (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
359  j++
360 
361 static void ldns_sha256_Transform(ldns_sha256_CTX* context,
362  const sha2_word32* data) {
363  sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
364  sha2_word32 T1, *W256;
365  int j;
366 
367  W256 = (sha2_word32*)context->buffer;
368 
369  /* initialize registers with the prev. intermediate value */
370  a = context->state[0];
371  b = context->state[1];
372  c = context->state[2];
373  d = context->state[3];
374  e = context->state[4];
375  f = context->state[5];
376  g = context->state[6];
377  h = context->state[7];
378 
379  j = 0;
380  do {
381  /* Rounds 0 to 15 (unrolled): */
382  ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
383  ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
384  ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
385  ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
386  ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
387  ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
388  ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
389  ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
390  } while (j < 16);
391 
392  /* Now for the remaining rounds to 64: */
393  do {
394  ROUND256(a,b,c,d,e,f,g,h);
395  ROUND256(h,a,b,c,d,e,f,g);
396  ROUND256(g,h,a,b,c,d,e,f);
397  ROUND256(f,g,h,a,b,c,d,e);
398  ROUND256(e,f,g,h,a,b,c,d);
399  ROUND256(d,e,f,g,h,a,b,c);
400  ROUND256(c,d,e,f,g,h,a,b);
401  ROUND256(b,c,d,e,f,g,h,a);
402  } while (j < 64);
403 
404  /* Compute the current intermediate hash value */
405  context->state[0] += a;
406  context->state[1] += b;
407  context->state[2] += c;
408  context->state[3] += d;
409  context->state[4] += e;
410  context->state[5] += f;
411  context->state[6] += g;
412  context->state[7] += h;
413 
414  /* Clean up */
415  a = b = c = d = e = f = g = h = T1 = 0;
416 }
417 
418 #else /* SHA2_UNROLL_TRANSFORM */
419 
420 static void ldns_sha256_Transform(ldns_sha256_CTX* context,
421  const sha2_word32* data) {
422  sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
423  sha2_word32 T1, T2, *W256;
424  int j;
425 
426  W256 = (sha2_word32*)context->buffer;
427 
428  /* initialize registers with the prev. intermediate value */
429  a = context->state[0];
430  b = context->state[1];
431  c = context->state[2];
432  d = context->state[3];
433  e = context->state[4];
434  f = context->state[5];
435  g = context->state[6];
436  h = context->state[7];
437 
438  j = 0;
439  do {
441  /* Copy data while converting to host byte order */
442  REVERSE32(*data++,W256[j]);
443  /* Apply the SHA-256 compression function to update a..h */
444  T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
445 #else /* BYTE_ORDER == LITTLE_ENDIAN */
446  /* Apply the SHA-256 compression function to update a..h with copy */
447  T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
448 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
449  T2 = Sigma0_256(a) + Maj(a, b, c);
450  h = g;
451  g = f;
452  f = e;
453  e = d + T1;
454  d = c;
455  c = b;
456  b = a;
457  a = T1 + T2;
458 
459  j++;
460  } while (j < 16);
461 
462  do {
463  /* Part of the message block expansion: */
464  s0 = W256[(j+1)&0x0f];
465  s0 = sigma0_256(s0);
466  s1 = W256[(j+14)&0x0f];
467  s1 = sigma1_256(s1);
468 
469  /* Apply the SHA-256 compression function to update a..h */
470  T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
471  (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
472  T2 = Sigma0_256(a) + Maj(a, b, c);
473  h = g;
474  g = f;
475  f = e;
476  e = d + T1;
477  d = c;
478  c = b;
479  b = a;
480  a = T1 + T2;
481 
482  j++;
483  } while (j < 64);
484 
485  /* Compute the current intermediate hash value */
486  context->state[0] += a;
487  context->state[1] += b;
488  context->state[2] += c;
489  context->state[3] += d;
490  context->state[4] += e;
491  context->state[5] += f;
492  context->state[6] += g;
493  context->state[7] += h;
494 
495  /* Clean up */
496  a = b = c = d = e = f = g = h = T1 = T2 = 0;
497 }
498 
499 #endif /* SHA2_UNROLL_TRANSFORM */
500 
501 void ldns_sha256_update(ldns_sha256_CTX* context, const sha2_byte *data, size_t len) {
502  size_t freespace, usedspace;
503 
504  if (len == 0) {
505  /* Calling with no data is valid - we do nothing */
506  return;
507  }
508 
509  /* Sanity check: */
510  assert(context != (ldns_sha256_CTX*)0 && data != (sha2_byte*)0);
511 
512  usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
513  if (usedspace > 0) {
514  /* Calculate how much free space is available in the buffer */
515  freespace = LDNS_SHA256_BLOCK_LENGTH - usedspace;
516 
517  if (len >= freespace) {
518  /* Fill the buffer completely and process it */
519  MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
520  context->bitcount += freespace << 3;
521  len -= freespace;
522  data += freespace;
523  ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
524  } else {
525  /* The buffer is not yet full */
526  MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
527  context->bitcount += len << 3;
528  /* Clean up: */
529  usedspace = freespace = 0;
530  return;
531  }
532  }
533  while (len >= LDNS_SHA256_BLOCK_LENGTH) {
534  /* Process as many complete blocks as we can */
535  ldns_sha256_Transform(context, (sha2_word32*)data);
536  context->bitcount += LDNS_SHA256_BLOCK_LENGTH << 3;
538  data += LDNS_SHA256_BLOCK_LENGTH;
539  }
540  if (len > 0) {
541  /* There's left-overs, so save 'em */
542  MEMCPY_BCOPY(context->buffer, data, len);
543  context->bitcount += len << 3;
544  }
545  /* Clean up: */
546  usedspace = freespace = 0;
547 }
548 
549 typedef union _ldns_sha2_buffer_union {
550  uint8_t* theChars;
551  uint64_t* theLongs;
553 
554 void ldns_sha256_final(sha2_byte digest[], ldns_sha256_CTX* context) {
555  sha2_word32 *d = (sha2_word32*)digest;
556  size_t usedspace;
557  ldns_sha2_buffer_union cast_var;
558 
559  /* Sanity check: */
560  assert(context != (ldns_sha256_CTX*)0);
561 
562  /* If no digest buffer is passed, we don't bother doing this: */
563  if (digest != (sha2_byte*)0) {
564  usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
565 #if BYTE_ORDER == LITTLE_ENDIAN
566  /* Convert FROM host byte order */
567  REVERSE64(context->bitcount,context->bitcount);
568 #endif
569  if (usedspace > 0) {
570  /* Begin padding with a 1 bit: */
571  context->buffer[usedspace++] = 0x80;
572 
573  if (usedspace <= ldns_sha256_SHORT_BLOCK_LENGTH) {
574  /* Set-up for the last transform: */
575  MEMSET_BZERO(&context->buffer[usedspace], ldns_sha256_SHORT_BLOCK_LENGTH - usedspace);
576  } else {
577  if (usedspace < LDNS_SHA256_BLOCK_LENGTH) {
578  MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA256_BLOCK_LENGTH - usedspace);
579  }
580  /* Do second-to-last transform: */
581  ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
582 
583  /* And set-up for the last transform: */
585  }
586  } else {
587  /* Set-up for the last transform: */
589 
590  /* Begin padding with a 1 bit: */
591  *context->buffer = 0x80;
592  }
593  /* Set the bit count: */
594  cast_var.theChars = context->buffer;
595  cast_var.theLongs[ldns_sha256_SHORT_BLOCK_LENGTH / 8] = context->bitcount;
596 
597  /* final transform: */
598  ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
599 
600 #if BYTE_ORDER == LITTLE_ENDIAN
601  {
602  /* Convert TO host byte order */
603  int j;
604  for (j = 0; j < 8; j++) {
605  REVERSE32(context->state[j],context->state[j]);
606  *d++ = context->state[j];
607  }
608  }
609 #else
611 #endif
612  }
613 
614  /* Clean up state data: */
615  MEMSET_BZERO(context, sizeof(ldns_sha256_CTX));
616  usedspace = 0;
617 }
618 
619 unsigned char *
620 ldns_sha256(unsigned char *data, unsigned int data_len, unsigned char *digest)
621 {
622  ldns_sha256_CTX ctx;
623  ldns_sha256_init(&ctx);
624  ldns_sha256_update(&ctx, data, data_len);
625  ldns_sha256_final(digest, &ctx);
626  return digest;
627 }
628 
629 /*** SHA-512: *********************************************************/
631  if (context == (ldns_sha512_CTX*)0) {
632  return;
633  }
634  MEMCPY_BCOPY(context->state, sha512_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
636  context->bitcount[0] = context->bitcount[1] = 0;
637 }
638 
639 #ifdef SHA2_UNROLL_TRANSFORM
640 
641 /* Unrolled SHA-512 round macros: */
642 #if BYTE_ORDER == LITTLE_ENDIAN
643 
644 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
645  REVERSE64(*data++, W512[j]); \
646  T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
647  K512[j] + W512[j]; \
648  (d) += T1, \
649  (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
650  j++
651 
652 
653 #else /* BYTE_ORDER == LITTLE_ENDIAN */
654 
655 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
656  T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
657  K512[j] + (W512[j] = *data++); \
658  (d) += T1; \
659  (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
660  j++
661 
662 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
663 
664 #define ROUND512(a,b,c,d,e,f,g,h) \
665  s0 = W512[(j+1)&0x0f]; \
666  s0 = sigma0_512(s0); \
667  s1 = W512[(j+14)&0x0f]; \
668  s1 = sigma1_512(s1); \
669  T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
670  (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
671  (d) += T1; \
672  (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
673  j++
674 
675 static void ldns_sha512_Transform(ldns_sha512_CTX* context,
676  const sha2_word64* data) {
677  sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
678  sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
679  int j;
680 
681  /* initialize registers with the prev. intermediate value */
682  a = context->state[0];
683  b = context->state[1];
684  c = context->state[2];
685  d = context->state[3];
686  e = context->state[4];
687  f = context->state[5];
688  g = context->state[6];
689  h = context->state[7];
690 
691  j = 0;
692  do {
693  ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
694  ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
695  ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
696  ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
697  ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
698  ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
699  ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
700  ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
701  } while (j < 16);
702 
703  /* Now for the remaining rounds up to 79: */
704  do {
705  ROUND512(a,b,c,d,e,f,g,h);
706  ROUND512(h,a,b,c,d,e,f,g);
707  ROUND512(g,h,a,b,c,d,e,f);
708  ROUND512(f,g,h,a,b,c,d,e);
709  ROUND512(e,f,g,h,a,b,c,d);
710  ROUND512(d,e,f,g,h,a,b,c);
711  ROUND512(c,d,e,f,g,h,a,b);
712  ROUND512(b,c,d,e,f,g,h,a);
713  } while (j < 80);
714 
715  /* Compute the current intermediate hash value */
716  context->state[0] += a;
717  context->state[1] += b;
718  context->state[2] += c;
719  context->state[3] += d;
720  context->state[4] += e;
721  context->state[5] += f;
722  context->state[6] += g;
723  context->state[7] += h;
724 
725  /* Clean up */
726  a = b = c = d = e = f = g = h = T1 = 0;
727 }
728 
729 #else /* SHA2_UNROLL_TRANSFORM */
730 
731 static void ldns_sha512_Transform(ldns_sha512_CTX* context,
732  const sha2_word64* data) {
733  sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
734  sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
735  int j;
736 
737  /* initialize registers with the prev. intermediate value */
738  a = context->state[0];
739  b = context->state[1];
740  c = context->state[2];
741  d = context->state[3];
742  e = context->state[4];
743  f = context->state[5];
744  g = context->state[6];
745  h = context->state[7];
746 
747  j = 0;
748  do {
750  /* Convert TO host byte order */
751  REVERSE64(*data++, W512[j]);
752  /* Apply the SHA-512 compression function to update a..h */
753  T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
754 #else /* BYTE_ORDER == LITTLE_ENDIAN */
755  /* Apply the SHA-512 compression function to update a..h with copy */
756  T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
757 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
758  T2 = Sigma0_512(a) + Maj(a, b, c);
759  h = g;
760  g = f;
761  f = e;
762  e = d + T1;
763  d = c;
764  c = b;
765  b = a;
766  a = T1 + T2;
767 
768  j++;
769  } while (j < 16);
770 
771  do {
772  /* Part of the message block expansion: */
773  s0 = W512[(j+1)&0x0f];
774  s0 = sigma0_512(s0);
775  s1 = W512[(j+14)&0x0f];
776  s1 = sigma1_512(s1);
777 
778  /* Apply the SHA-512 compression function to update a..h */
779  T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
780  (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
781  T2 = Sigma0_512(a) + Maj(a, b, c);
782  h = g;
783  g = f;
784  f = e;
785  e = d + T1;
786  d = c;
787  c = b;
788  b = a;
789  a = T1 + T2;
790 
791  j++;
792  } while (j < 80);
793 
794  /* Compute the current intermediate hash value */
795  context->state[0] += a;
796  context->state[1] += b;
797  context->state[2] += c;
798  context->state[3] += d;
799  context->state[4] += e;
800  context->state[5] += f;
801  context->state[6] += g;
802  context->state[7] += h;
803 
804  /* Clean up */
805  a = b = c = d = e = f = g = h = T1 = T2 = 0;
806 }
807 
808 #endif /* SHA2_UNROLL_TRANSFORM */
809 
810 void ldns_sha512_update(ldns_sha512_CTX* context, const sha2_byte *data, size_t len) {
811  size_t freespace, usedspace;
812 
813  if (len == 0) {
814  /* Calling with no data is valid - we do nothing */
815  return;
816  }
817 
818  /* Sanity check: */
819  assert(context != (ldns_sha512_CTX*)0 && data != (sha2_byte*)0);
820 
821  usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
822  if (usedspace > 0) {
823  /* Calculate how much free space is available in the buffer */
824  freespace = LDNS_SHA512_BLOCK_LENGTH - usedspace;
825 
826  if (len >= freespace) {
827  /* Fill the buffer completely and process it */
828  MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
829  ADDINC128(context->bitcount, freespace << 3);
830  len -= freespace;
831  data += freespace;
832  ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
833  } else {
834  /* The buffer is not yet full */
835  MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
836  ADDINC128(context->bitcount, len << 3);
837  /* Clean up: */
838  usedspace = freespace = 0;
839  return;
840  }
841  }
842  while (len >= LDNS_SHA512_BLOCK_LENGTH) {
843  /* Process as many complete blocks as we can */
844  ldns_sha512_Transform(context, (sha2_word64*)data);
847  data += LDNS_SHA512_BLOCK_LENGTH;
848  }
849  if (len > 0) {
850  /* There's left-overs, so save 'em */
851  MEMCPY_BCOPY(context->buffer, data, len);
852  ADDINC128(context->bitcount, len << 3);
853  }
854  /* Clean up: */
855  usedspace = freespace = 0;
856 }
857 
858 static void ldns_sha512_Last(ldns_sha512_CTX* context) {
859  size_t usedspace;
860  ldns_sha2_buffer_union cast_var;
861 
862  usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
863 #if BYTE_ORDER == LITTLE_ENDIAN
864  /* Convert FROM host byte order */
865  REVERSE64(context->bitcount[0],context->bitcount[0]);
866  REVERSE64(context->bitcount[1],context->bitcount[1]);
867 #endif
868  if (usedspace > 0) {
869  /* Begin padding with a 1 bit: */
870  context->buffer[usedspace++] = 0x80;
871 
872  if (usedspace <= ldns_sha512_SHORT_BLOCK_LENGTH) {
873  /* Set-up for the last transform: */
874  MEMSET_BZERO(&context->buffer[usedspace], ldns_sha512_SHORT_BLOCK_LENGTH - usedspace);
875  } else {
876  if (usedspace < LDNS_SHA512_BLOCK_LENGTH) {
877  MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA512_BLOCK_LENGTH - usedspace);
878  }
879  /* Do second-to-last transform: */
880  ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
881 
882  /* And set-up for the last transform: */
884  }
885  } else {
886  /* Prepare for final transform: */
888 
889  /* Begin padding with a 1 bit: */
890  *context->buffer = 0x80;
891  }
892  /* Store the length of input data (in bits): */
893  cast_var.theChars = context->buffer;
894  cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8] = context->bitcount[1];
895  cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
896 
897  /* final transform: */
898  ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
899 }
900 
901 void ldns_sha512_final(sha2_byte digest[], ldns_sha512_CTX* context) {
902  sha2_word64 *d = (sha2_word64*)digest;
903 
904  /* Sanity check: */
905  assert(context != (ldns_sha512_CTX*)0);
906 
907  /* If no digest buffer is passed, we don't bother doing this: */
908  if (digest != (sha2_byte*)0) {
909  ldns_sha512_Last(context);
910 
911  /* Save the hash data for output: */
912 #if BYTE_ORDER == LITTLE_ENDIAN
913  {
914  /* Convert TO host byte order */
915  int j;
916  for (j = 0; j < 8; j++) {
917  REVERSE64(context->state[j],context->state[j]);
918  *d++ = context->state[j];
919  }
920  }
921 #else
923 #endif
924  }
925 
926  /* Zero out state data */
927  MEMSET_BZERO(context, sizeof(ldns_sha512_CTX));
928 }
929 
930 unsigned char *
931 ldns_sha512(unsigned char *data, unsigned int data_len, unsigned char *digest)
932 {
933  ldns_sha512_CTX ctx;
934  ldns_sha512_init(&ctx);
935  ldns_sha512_update(&ctx, data, data_len);
936  ldns_sha512_final(digest, &ctx);
937  return digest;
938 }
939 
940 /*** SHA-384: *********************************************************/
942  if (context == (ldns_sha384_CTX*)0) {
943  return;
944  }
945  MEMCPY_BCOPY(context->state, sha384_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
947  context->bitcount[0] = context->bitcount[1] = 0;
948 }
949 
950 void ldns_sha384_update(ldns_sha384_CTX* context, const sha2_byte* data, size_t len) {
951  ldns_sha512_update((ldns_sha512_CTX*)context, data, len);
952 }
953 
954 void ldns_sha384_final(sha2_byte digest[], ldns_sha384_CTX* context) {
955  sha2_word64 *d = (sha2_word64*)digest;
956 
957  /* Sanity check: */
958  assert(context != (ldns_sha384_CTX*)0);
959 
960  /* If no digest buffer is passed, we don't bother doing this: */
961  if (digest != (sha2_byte*)0) {
962  ldns_sha512_Last((ldns_sha512_CTX*)context);
963 
964  /* Save the hash data for output: */
965 #if BYTE_ORDER == LITTLE_ENDIAN
966  {
967  /* Convert TO host byte order */
968  int j;
969  for (j = 0; j < 6; j++) {
970  REVERSE64(context->state[j],context->state[j]);
971  *d++ = context->state[j];
972  }
973  }
974 #else
976 #endif
977  }
978 
979  /* Zero out state data */
980  MEMSET_BZERO(context, sizeof(ldns_sha384_CTX));
981 }
982 
983 unsigned char *
984 ldns_sha384(unsigned char *data, unsigned int data_len, unsigned char *digest)
985 {
986  ldns_sha384_CTX ctx;
987  ldns_sha384_init(&ctx);
988  ldns_sha384_update(&ctx, data, data_len);
989  ldns_sha384_final(digest, &ctx);
990  return digest;
991 }
_ldns_sha512_CTX::state
uint64_t state[8]
Definition: sha2.h:88
MEMCPY_BCOPY
#define MEMCPY_BCOPY(d, s, l)
Definition: sha2.c:173
ldns_sha256
unsigned char * ldns_sha256(unsigned char *data, unsigned int data_len, unsigned char *digest)
Convenience function to digest a fixed block of data at once.
Definition: sha2.c:620
BYTE_ORDER
#define BYTE_ORDER
Definition: config.h:525
LDNS_SHA256_DIGEST_LENGTH
#define LDNS_SHA256_DIGEST_LENGTH
Definition: sha2.h:70
LDNS_SHA256_BLOCK_LENGTH
#define LDNS_SHA256_BLOCK_LENGTH
Definition: sha2.h:69
_ldns_sha2_buffer_union::theChars
uint8_t * theChars
Definition: sha2.c:550
Sigma1_256
#define Sigma1_256(x)
Definition: sha2.c:203
_ldns_sha512_CTX
Definition: sha2.h:87
sigma1_512
#define sigma1_512(x)
Definition: sha2.c:211
sigma0_256
#define sigma0_256(x)
Definition: sha2.c:204
sha2_byte
uint8_t sha2_byte
Definition: sha2.c:101
Sigma1_512
#define Sigma1_512(x)
Definition: sha2.c:209
ldns_sha384_final
void ldns_sha384_final(sha2_byte digest[], ldns_sha384_CTX *context)
Definition: sha2.c:954
ldns_sha512_SHORT_BLOCK_LENGTH
#define ldns_sha512_SHORT_BLOCK_LENGTH
Definition: sha2.c:113
Maj
#define Maj(x, y, z)
Definition: sha2.c:199
LDNS_SHA512_DIGEST_LENGTH
#define LDNS_SHA512_DIGEST_LENGTH
Definition: sha2.h:76
ldns_sha512
unsigned char * ldns_sha512(unsigned char *data, unsigned int data_len, unsigned char *digest)
Convenience function to digest a fixed block of data at once.
Definition: sha2.c:931
_ldns_sha2_buffer_union::theLongs
uint64_t * theLongs
Definition: sha2.c:551
ADDINC128
#define ADDINC128(w, n)
Definition: sha2.c:142
ldns_sha2_buffer_union
union _ldns_sha2_buffer_union ldns_sha2_buffer_union
ldns_sha512_final
void ldns_sha512_final(sha2_byte digest[], ldns_sha512_CTX *context)
Definition: sha2.c:901
ldns_sha256_init
void ldns_sha256_init(ldns_sha256_CTX *context)
Definition: sha2.c:315
ldns_sha512_init
void ldns_sha512_init(ldns_sha512_CTX *context)
Definition: sha2.c:630
_ldns_sha256_CTX::buffer
uint8_t buffer[64]
Definition: sha2.h:85
LDNS_SHA384_DIGEST_LENGTH
#define LDNS_SHA384_DIGEST_LENGTH
Definition: sha2.h:73
Ch
#define Ch(x, y, z)
Definition: sha2.c:198
sha2_word64
uint64_t sha2_word64
Definition: sha2.c:106
_ldns_sha256_CTX
Definition: sha2.h:82
LITTLE_ENDIAN
#define LITTLE_ENDIAN
Definition: config.h:514
ldns_sha384_update
void ldns_sha384_update(ldns_sha384_CTX *context, const sha2_byte *data, size_t len)
Definition: sha2.c:950
_ldns_sha2_buffer_union
Definition: sha2.c:549
sha2_word32
uint32_t sha2_word32
Definition: sha2.c:102
ldns_sha256_update
void ldns_sha256_update(ldns_sha256_CTX *context, const sha2_byte *data, size_t len)
Definition: sha2.c:501
LDNS_SHA512_BLOCK_LENGTH
#define LDNS_SHA512_BLOCK_LENGTH
Definition: sha2.h:75
MEMSET_BZERO
#define MEMSET_BZERO(p, l)
Definition: sha2.c:172
config.h
Sigma0_512
#define Sigma0_512(x)
Definition: sha2.c:208
_ldns_sha512_CTX::bitcount
uint64_t bitcount[2]
Definition: sha2.h:89
sigma1_256
#define sigma1_256(x)
Definition: sha2.c:205
ldns_sha384
unsigned char * ldns_sha384(unsigned char *data, unsigned int data_len, unsigned char *digest)
Convenience function to digest a fixed block of data at once.
Definition: sha2.c:984
ldns_sha256_final
void ldns_sha256_final(sha2_byte digest[], ldns_sha256_CTX *context)
Definition: sha2.c:554
Sigma0_256
#define Sigma0_256(x)
Definition: sha2.c:202
_ldns_sha256_CTX::state
uint32_t state[8]
Definition: sha2.h:83
sha2.h
_ldns_sha512_CTX::buffer
uint8_t buffer[128]
Definition: sha2.h:90
ldns_sha256_SHORT_BLOCK_LENGTH
#define ldns_sha256_SHORT_BLOCK_LENGTH
Definition: sha2.c:111
ldns_sha512_update
void ldns_sha512_update(ldns_sha512_CTX *context, const sha2_byte *data, size_t len)
Definition: sha2.c:810
LDNS_SHA384_BLOCK_LENGTH
#define LDNS_SHA384_BLOCK_LENGTH
Definition: sha2.h:72
_ldns_sha256_CTX::bitcount
uint64_t bitcount
Definition: sha2.h:84
sigma0_512
#define sigma0_512(x)
Definition: sha2.c:210
ldns_sha384_init
void ldns_sha384_init(ldns_sha384_CTX *context)
Definition: sha2.c:941